Для работы двигателя необходим какой-нибудь способ инициации сгорания в строго определенный момент каждого рабочего цикла, Наиболее общепринятым способом является использование кратковременной высоковольтной искры. Высоковольтная искра проскакивает с изолированного электрода в центре запальной свечи на массу(заземление на корпус) через небольшой воздушный промежуток. К неотъемлемым элементам любой системы зажигания относятся следующие. Во-первых, необходимо найти способ получения электрической энергии для питания системы Даже несмотря на то, что во многих случаях источником энергии служит батарея, следует обеспечить ее подзарядку, в противном случае система скоро перестанет работать в связи с тем, что батарея разрядилась. Питание от батареи или от отдельной обмотки питания подводится к катушке зажигания. Это устройство преобразует ток небольшого напряжения и большой силы («низковольтный») в ток большого напряжения и низкой силы («высоковольтный’), необходимый для образования искры на электродах Обычно в современных системах приходится говорить о преобразовании напряжения 12 вольт в напряжение порядка 40 киловольт. Для управления и изменения момента искрообразования требуется какой-нибудь коммутатор механического типа в виде контактного прерывателя или его электронного аналога — индуктивного датчика, или датчика угла поворота коленчатого вала в сочетании с блоком электронного управления (ECU). Кроме того, необходим способ изменения момента новообразования (опережения и запаздывания), механически или при помощи электроники оптимизирующий угол опере¬жения зажигания на всех частотах вращения двигателя. Здесь рассматриваются основные теории, принципы и методы, связанные с образованием искры и управлением моментом искрообразования
Источник питания
Следует отметить, что для питания системы зажигания требуется постоянное низковольтное напряжение, благодаря которому можно получить искру для воспламенения.
Непосредственное зажигание
В наиболее простой форме питание системы зажигания осуществляется от обмотки зажигания, расположенной в основном генераторе. Главное преимущество такой системы — в независимости источника питания от нагрузок в электрической системе машины. Единственный существенный недостаток состоит в том. что при низких частотах вращения двигателя, преобладающих при его работе, энергия, отдаваемая обмоткой питания, может быть недостаточна для образования мощной искры. На практике конструкторы гарантируют, что эта проблема не возникнет при нормальных условиях, разве что только из-за старой проводки, да еще загрязненной или плохо отрегулированной свечи зажигания воз¬растет потребление энергии, способное создать некоторые затруднения.
Батарейное зажигание
Альтернативой вышеописанному подходу может служить система, в которой питание поступает из общей системы электрооборудования. Этот подход чаще всего встречается на машинах, которые оснащены полноценной системой электрооборудования с аккумуляторной батареей, обеспечивающей питание при неработающем двигателе или при запуске. Это позволяет избежать всевозможных проблем с запуском, связанных с низкой энергоотдачей. свойственной системам непосредственного эажигания. Тем на менее,проблемы, связанные с проводкой и свечами зажигания, все еще остаются. Кроме того, для обеспечения питанием системы зажигания и работы электростартера батарея всегда должна быть полностью заряжена.
Катушка зажигания
Катушка системы зажигания двигателя (часто называемая «бобина») — элемент системы зажигания, который служит для преобразования низковольтного напряжения, поступающего от аккумуляторной батареи или генератора, в высоковольтное. Основная функция катушки зажигания — генерация высоковольтного электрического импульса на свече зажигания.
Свеча зажигания
Свеча зажигания предназначена для под¬вода высоковольтного импульса от свечного наконечника к центральному, или положительному электрод в виде искры и потом отвода его на массу (заземление). Свеча зажигания — неремонтопригодная деталь системы зажигания, предназначенная для работы в течение определенного периода, по окончании которого (когда она изнашивается и разрушается) ее выбрасывают и заменяют новой. Свеча зажигания великолепно подходит под эти требования, как с точки зрения низкой стоимости, так и ответственной роли, которую она надежно исполняет. Фактически, низкая стоимость свечи зажигания вводит в заблуждение. поскольку это — деталь прецизионного исполнения, но в значительной степени она связана с громадными объемами производства свечей. Изменяющиеся требования, предъявляемые к свечам зажигания, а также разнообразные и неблагоприятные условия, при которых они должны работать на двигателях различного типа, привели к тому, что свечи производятся в запутанном сочетании размеров, длин резьб и характеристик теплоотвода.
Опережение зажигания и сгорание
Опережение моменте искрообраэования
Выбор момента времени воспламенения топливовоздушной смеси, то есть точки рабочего цикла двигателя, в которой образуется искра, является чрезвычайно важным. Момент искрообразования должен быть рассчитан так. чтобы топливовоздушная смесь могла полностью сгореть, с учетом достижения максимального давления (а следовательно, и максимальной работы цикла)в строго заданный момент по отношению к положению поршня. Нет ничего хорошего в том, что к моменту окончания сгорания поршень все еще будет двигаться к ВМТ или уже пройдет половину своего хода от ВМТ к НМТ. Время, за которое происходит процесс сгорания топливовоздушной смеси до его полного окончания, очень незначительно. Однако сгорание топливоеоэдушной смеси — это не мгновенный взрыв, а управляемое сгорание. В идеала процесс сгорания должен начаться непосредственно перед достижением поршнем ВМТ (то есть перед ВМТ) так, чтобы пик процесса сгорания и большая часть получаемой энергии пришлись на момент времени, когда поршень начинает двигаться вниз, то есть непосредственно за ВМТ. Если максимальное количество энергии концентрируется в камере сгорания сразу после того, как ее объем был минимален (поскольку это была ВМТ), то сипа, с которой газы давят на поршень, будет максимальной. Однако оптимальный момент зажигания при одной частоте вращения двигателя, при другой частоте уже не будет соответствовать оптимальному моменту воспламенения. Это связано с тем, что при повышении частоты вращения двигателя количество времени, отводимого для сгорания топливовоздушной смеси, уменьшается. В идеале момент искрообразования при увеличении частоты вращения двигателя должен сдвигаться от ВМТ.
Опережение и запаздывание
В разделе о фазах газораспределения подробно освещаются ограничения, налагаемые на двигатель в отношении использования его мощности в широком диапазоне частот вращения, так как большинства мотоциклов имеет постоянные фазы газораспределения. Это приводит к компромиссу, в результате чего двигатель должен быть спроектирован под определенные характеристики (исходя из высокого крутящего момента при низких частотах вращения, за счет потери мощности в диапазоне высоких частот вращения и наоборот). Огромное преимущество момента искрообразования по сравнению с фазами газораспределения состоит в том, что его можно относительно легко изменять. «Опережение» и «запаздывание»- термины, употребляемые для описания изменения момента искрообразования.
При повышении частоты вращения двигателя опережение зажиганияувеличивается, то есть искрообраэовэние происходит раньше, а по мере снижения частоты вращения до оборотов холостого хода происходит «запаздывание» момента искрообразования, до тех пор, пока не будет достигнут исходный угол опережения зажигания. Опережение зажигания измеряется в градусах поворота коленчатого вала до ВМТ, так же, как и фазы газораспределения, следовательно, угол перед ВМТ, при котором на свече образуется искра, называется величиной опережения зажигания.
На ранних двухтактных двигателях небольшого объема с небольшими камерами сгорания, в связи с ограничениями в самой конструкции системы зажигания, допускалось использование постоянного угла опережения зажигания или его изменение в ограниченных пределах. Однако, в поиске способов улучшения характеристик, наряду с развитием многоцилиндровых четырехтактных машин, необходимость более точного управления углом опережения зажигания привела к развитию более совершенных систем зажигания, обеспечивающих изменение опережения. Для управления углом опережения зажигания ранее использовались механические центробежные устройства, но сейчас они уступают место электронным системам управления зажиганием, в том числе осуществляющим функцию изменения угла опережения зажигания.
Необходимо очень тщательно устанавливать угол опережения зажигания. Слишком большой угол опережения зажигания может служить причиной детонации. Этот эффект часто сопровождается звонким металлическим стуком (хотя детонация — не единственная его причина, при возникновении калильного зажигания возможны подобные симптомы). Поскольку это явление происходит в момент, когда поршень находится перед ВМТ и продолжает двигаться вверх, нагрузка на двигатель настолько велика, что продолжение работы двигателя с подобными проявлениями может привести к дорогостоящим повреждениям в виде прогара поршней и разрушения подшипников. Если угол опережения зажигания меньше оптимального, работа, получаемая в результате сгорания топлива, расходуется впустую, в результате чего снижается мощность и возрастает расход топлива.
Системы зажигания с маховичным генератором (магдино)
Система зажигания с маховичным генератором (магдино), по-видимому, представляет собой самый простой способ получения искры.
Она была популярна в течение многих лет на небольших двигателях. Преимуществом та¬кой системы является возможность подвода напряжения непосредственно от отдельной обмотки питания, из чего следует, что для запуска двигателя с такой системой необходимость в аккумуляторной батарее отпадает. Маховичный генератор это, по сути, небольшой генератор переменного тока с вращающимся постоянным магнитом. Он состоит из легкосплавного ротора, в который при изготовлении залиты постоянные магниты. Ротор устанавливается на одной из цапф коленчатого вала и вращается вместе с ним, выполняя роль дополнительного маховика. Внутри ротора, на отдельной неподвижной круглой пластине, называемой статором, располагаются обмотки питания цепей освещения и системы зажигания. При вращении ротора магнитное поле, создаваемое постоянными магнитами многократно проходит через обмотки катушек и. таким образом, индуцирует ток. Как следует из названия, генератор переменного тока вырабатывает переменный ток (АС). Это связано с постоянным изменением полярности магнитов относительно обмоток, что, в свою очередь, означает следующее; ток, индуцированный в катушках, сначала имеет одно направление, а потом полностью изменяет его и течет в обратную сторону. Можно предположить, что существует некая мертвая точка между этими крайними случаями, в которой ток отсутствует, но поскольку эти колебания происходят достаточно быстро, то это не имеет большого значения, конечно, в рамках того, что позволяет система освещения. Те, кто были владельцами машин с маховичным генератором, без сомнения, знают, в чем выражаются эти колебания: на холостом ходу происходит незначительное мигание приборов освещения.
Батарейные системы зажигания
Система магдино (до появления электронного управления), не позволяла достичь необходимого диапазона изменения опережения зажигания для получения удовлетворительных характеристик во всем диапазоне частот вращения двигателя. Это связано с тем, что момент размыкания контактов соответствовал бы периоду времени, когда обмотка питания не обеспечивает максимальной энергоотдачи, так что было необходимо другое (постоянное] питание. Новым источником питания служила не обмотка, а основная система электрооборудования машины. В батарейной системе маховичный генератор заменяется более существенным генератором переменного тока (альтернатором), при этом вырабатываемый им переменный ток выпрямляется (преобразуется в постоянный ток, (DC) и регулируется (поддерживается в определенных пределах] так, чтобы соответствовать предъявляемым к нему требованиям. Батарея выполняет функцию накопителя энергии для поддержания постоянного энергоснабжения при низких частотах вращения и не работающем двигателе. В этом преимущество батареи,требующей системы электрооборудования постоянного тока.
Электронные системы зажигания
Слабая сторона обеих описанных систем — наличие механических частей. Трудно достичь точности производства таких узлов, как контактный прерыватель или автоматический регулятор опережения зажигания. Точность обеспечивала бы надежную работу, но даже если она будет достигнута, со временем, в процессе эксплуатации, сказывается влияние износа. Вначале вышеописанные проблемы были частично решены в контактно-транзисторных системах зажигания. Это первое устройство, уменьшающее электрическую нагрузку на контактах прерывателях за счет применения транзистора, выполняющего функцию ключа для тока первичной обмотки катушки зажигания: тем на менее, прерыватель по прежнему необходим, для того чтобы включать и выключать транзистор. Это более или менее устраняет проблему эрозионного изнашивания контактов, но означает, что они все еще необходимы Работа многих ранних систем основывалась на этом принципе, но теперь их полностью вытеснили электронные системы.
Электронные системы зажигания делятся на два типа:
- Система зажигания с разрядным конденсатором (CDI)
- Транзисторные системы зажигания
Системы управления двигателем
К числу параметров, определяющих мощность и характеристики двигателя, относятся: правильные пропорции и объем топливовоздушной смеси для любой данной ситуации, а также оптимальное время ее воспламенения, обеспечивающее полное сгорание. Раздельные системы не в состоянии связать функции подачи топлива и зажигания, и, несмотря на цифровое управление, не обеспечивают получение оптимальных мощности, КПД и токсичности отработавших газов.
Решение возможно в случае применения системы контроля двигателя, управляющей необходимыми двигателю подачей топлива и зажиганием, способной автоматически изменять свои выходные сигналы для соответствия всем условиям и, таким образом, обеспечивать оптимальную характеристику и бесперебойную работу двигателя. В блоке управления двигателем (ECU) данные содержатся в виде карт, позволяющих согласовывать характеристику с различными условиями работы, а в некоторых случаях имеется возможность изменения этих данных.Компания Bosch одной из первых опробовала преимущества объединения цифрового управления системами зажигания и впрыска топлива, а их система Motronic впервые появилась на машинах BMW 16v серии К. Затем последовали другие системы управления двигателем от компаний Sagem, Denso, Mareili и PGM-F1 от компании Honda.